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Recent papers re-examining the effect of including an operation of antisymmetry among the per- 
mitted elements of symmetry and making further generalizations of the space groups are reviewed. 
Suggestions are made, and developed for the two dimensional case, for further elaboration arising 
from the superposition of symmetrical and antisymmetrieal groups. The description of the physical 
properties of crystals is a possible field of applicability. 

INTRODUCTORY:  
REPORT ON RECENT WORK 

Nomenc la ture  

Antisymmetry is the correspondence of faces, points or 
other crystallographic objects having some property 
denoted by a positive sign, to other faces, points or 
objects symmetrically related in position, but having 
the same property with the opposite sign. 

Operations of antisymmetry transfer the object to a 
symmetrically related position and change its sign. 
The operations are denoted by the usual symbols with 
added primes. An additional operation t', which re- 
presents a translation of half a repeat distance followed 
by a reversal of sign, has to be introduced (Cochran, 
1952). 

In diagrams the relationship of antisymmetry is 
best represented by colouring corresponding objects 
black and white, and symmetry groups containing 
elements of antisymmetry are conveniently called 
black and white groups. The 1651 black and white 
space groups (infinite groups in three dimensions) 
have been named Shubnikov groups (Zamorzaev, 1953). 
Groups in which equal and opposite black and white 
objects are exactly superposed are designated as grey. 

Symmetry elements relate identical objects; opera- 
tions of antisymmetry transform objects which have 
two possible values of a given property from one value 
to the other; and, extending this concept (Belov & 
Tarkhova, 1956), related objects which have n possible 
values of a property and are transformed cyclically 
from one to another by n-colour symmetry operations 
can be systematised in n-coloured symmetry groups. 

Discussion will be limited to infinitely repeating 
groups, and non-crystallographic point groups will be 
excluded. 

The 46 black and white  plane groups  

If the 5 plane Bravais lattices are centred by points 
of a different colour, so that  each contains equal 
numbers of black and white lattice points, then 5 new 
plane lattices are obtained. 'Two successive eolour 

translations t' in the same direction are equivalent to 
one non-coloured translation in that  direction. Thus, 
the length of the shortest coloured translation in any 
given direction is equal to half the length of the short- 
est non-coloured translation in the same direction' 
(Belov, Neronova & Smirnova, 1955). The l0 plane 

Fig. 1. The black and white plane lattices. (a) Oblique; 
(b) rectangular; (e) square; (d) hexagonal. 

Bravais lattices (Fig. 1) are as follows (primed symbols 
denote black and white lattices, suffix b denotes 
centring on the b edge and suffix C denotes face 
centring) : 

Oblique 
P, P£ 

Rectangular 
P, Pc, Pc, c, c" 

Square 
p, pb 

Hexagonal 
P 

In two dimensions lattices are p or c and the sym- 
metry elements are 2, 3, 4, 6, m, g. For the black and 
white groups the lattices are as above, and the sym- 
metry elements are increased by 2', 4', 6', m', g'. (The 
element 3' gives a grey group.) When the full symbols 
for the 17 plane groups are written down and their 
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elements (lattices, axes and planes) are given primes 
in turn to give all possible combinations, the 46 black 
and white plane groups are generated. 

If the 17 ordinary plane groups and 17 further plane 
groups, in which black and white objects are every- 
where exactly superposed (grey groups), are added to 
the above, a total of 80 plane groups results. These 
were first described by Alexander & Herrmann (1928, 
1929) and by Weber (1929) and were tabulated by 
Shubnikov (1940, 1946). 

Cochran (1952) derives the plane groups without 
introducing the concept of black and white lattices 
and his notation differs slightly from that of Belov & 
Tarkhova: for example, Cochran uses pm+t' for p~m 
and pro, m + m' for p'bmm. 

Lonsdale (in a note to Cochran, 1952) points out 
that  the plane groups can be derived by collapsing the 
230 space groups. For example, pro' is equivalent to 
P2 where x = 0 or z = 0, and pm'g' to P2221 where 
x = 0 o r y - - 0 .  

Belov & Tarkhova (1956) tabulate these generating 
groups but give an alternative derivation from those 
space groups which dispose equivalent points on two 
and only two levels, that  is, from groups containing 
centred lattices, glide planes or screw axes 21, 42 or 6 a. 
If equivalent points lie only on levels z and z + ~2-, then, 

if the former are coloured black and the latter white 
and the figure is projected on to the x-y plane, the 
plane groups will result. This approach proves capable 
of extension to colour groups (see below). 

The 1651 black and white space groups  
(Shubnikov groups)  

The full extension of the above concepts to three 
dimensions has been made by Zamorzaev (1953) by 
a mathematical method, and independently by Belov 
et al. (1955) by the Bravais-lattice method described 
above. 

In three dimensions there are 36 black and white 
Bravais lattices (including the 14 uncoloured lattices 
but excluding a further 14 grey lattices). The usual 
lattice symbols, P, A, B, C, I, F, R, are used and the 
suffix denotes the mode of centring by coloured points. 
The suffix s (sceles--edge) denotes edge centring 
(Fig. 2). 

The 1651 Shubnikov groups (which include the 230 
space groups and the 230 corresponding grey groups, 
the latter denoted by adding the symbol 1' to the 
space-group symbol) can be derived by writing down 
the full international symbol for each space group and 
making each element coloured in turn. All combina- 

3 
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Fig. 2. The three-dimensional black and white lattices. 1-2: triclinic; 3-9: monoclinic; 
10-21 : orthorhombic; 22-27 : tetragonal; 28-31 : hexagonal; 32-36 : cubic. 
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tions of coloured elements have to be examined and 
various identities recognized. Ten theorems concerned 
with this process are developed by Belov et al. Besides 
the lattices, the coloured symmetry  elements are: 

i t p ! 1', 2', 4', 6', 2i, 3', 4', 4~, 4~, 4~, 6', 6,, 6,, 6a, 6~, 6~, 
m',  n' ,  d', a', b', c'. 

Except for the actual working out and listing of all 
of the black and white groups in three dimensions, 
most of the above is explicit or implicit in Heesch's 
examination (1930) of the four-dimensional groups of 
three-dimensional space. Some of the possible applica- 
tions are also foreshadowed. 

Plane coloured groups with non-crystallographic 
symmetry elements 

I t  is pointed out by Belov & Tarkhova tha t  further 
types of plane symmetry  groups can be constructed 
using 5, 7 or more colours. These can really be referred 
to the existing plane groups where the motive of 
pat tern consists of a succession of an arbitrary number 
of coloured elements and itself has a certain regularity 
of arrangement. An example of such a group would be 
the plane group cm with a yellow object at (x, y )=  (0, 0), 
green at (0, ~), white at (0, ~) black at (0, ~), red at 
(0, ~), blue at  (0, ~) and brown at (0, ~). 

Coloured symmetry t~roups 

Groups relating objects of more than two colours have 
been discussed (for the two-dimensional case) by 
Belov & Tarkhova (1956). The most easily visualized 
derivation is from the 230 space groups, as an extension 
of the procedure outlined above. 

In the x - y  projection of a space group certain sym- 
metry  elements (lattices, screw axes and glide planes) 
may relate objects with z coordinates z and z+½. 
When projected, objects so related can be coloured 
black and white and it has been shown tha t  the 46 
plane black and white groups result. If space groups 
containing the elements 31, 32, 62, 64, or R are similarly 
projected, triplets of symmetry-related objects lying 
at  levels z, z+½, and z + § can be similarly represented 
in projection by 3 colours, say red, green and yellow 
respectively. 

The same procedure can be applied for 4 and 6 
colours. The only low-symmetry space group giving 
rise to a multicoloured group is Fdd2.  

As there are only 15 coloured crystallographic plane 
groups (including 4 enantiomorphous pairs) they have 
simply been named after the space groups from which 
they are derived (by projection along the principal 
polar axis). They are as follows: 

3-colour plane groups 
P31, P32, P62, P6a, R3, R 3 m  

4-coloured plane groups 
P41, P4 a, 141, I41md = F41dm, I41cd = F41dc , Fdd2  

6-colour plane groups 
P61, P65, R3c 

Ewald (1956) proposes the combination of the space 
groups S with the cyclic group 

[1, exp 2~ri/p, exp 4~i /p ,  . . .  exp 2 z d ( p - 1 ) / p ]  . 

When p = 2 this would generate the black and white 
groups, and when p = 3, 4, 6 the coloured groups. 
Other values of p are not compatible with the crystal- 
lographic groups. 

Belov (1956) further shows how three-dimensional 
coloured mosaics can be constructed. 

Practical crystallographic applications 

The util i ty of the 46 black and white plane groups 
seems now established. 

Cochran & Dyer (1952) and Vajnshtejn & Tisch- 
chenko (1955) show that  generalized projections, 
where the functions plotted may have equal and op- 
posite excursions of values, have the symmetries of 
these groups. 

The earliest discussion of the subject by Alexander 
& Herrmann deals with the symmetries possible for 
quasi-two-dimensional layers of molecules (in liquid 
crystals). This topic is pursued more exhaustively by 
Kitaigorodskii (1955) as part  of a systematic s tudy of 
the packing of organic molecules of various symmetries. 

I t  might be pointed out that  the 46 black and white 
groups and the 15 coloured groups derive from those 
space groups from which Pat terson-Harker  syntheses 
are possible and may be useful in the interpretation of 
such sections. 

The symmetries of antiferromagnetic crystals can 
be most concisely described in terms of Shubnikov 
groups, and work on this aspect is in progress. Other 
questions of crystal physics seem likely to call for the 
use of some such extension of symmetry  theory. 

COMPOUND GROUPS 

Introduction 

The 230 space groups describe the possible symmetries 
of a periodic scalar field (such as electron density) 
having one parameter per point. The extension of the 
concept of identity symmetry  to that  of ant isymmetry 
at once suggests further extensions for this reason: 
if a vector field (3 components to be specified at every 
point) were restricted to identity symmetry  no more 
than the 230 groups would occur; if, however, anti- 
symmetry  relationships were allowed, permutations 
of the signs of the various components could occur, 
thus giving further distinct groups. 

:For example, consider a vector field (having 3 com- 
ponents V1, V2, V3) in which there is a plane M of 
generalized symmetry.  The plane has the property 
that  the V 1 components are reflected symmetrically 
and the V 2 and V a components are reflected anti- 
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symmetrically. What then is the number of different 
space groups which the vector field V can have when 
such additional symmetry elements are introduced? 

The question is not merely of mathematical but also 
of practical interest since, for example, the anisotropic 
temperature factor (different for every atom in the 
unit cell of a crystal) obviously represents a vector 
field. 

In general, suppose that there exists in a crystal 
a field of a quantity F having n components. If 
n = 1, F may be a scalar or pseudo-scalar; if n = 2, 
F may be a complex number (such as the scattering 
factor near an absorption edge); if n = 3, F may be 
a polar or axial vector (such as E or H); if n = 6, 
2' may be a symmetrical second-order tensor (such as 
susceptibility) etc. In fact, indefinitely complicated 
fields can be imagined, and the problem can be for- 
mulated thus: Considering the elements of symmetry 
and antisymmetry, how many space groups are there 
in N dimensions when n quantities have to be specified 
at each point in space and each of these quantities 
follows a symmetry arrangement independently of the 
others ? 

There appear to be two possible approaches: 
(1) To introduce a number of compound symmetry 

elements with relatively complex properties describing 
the complete transformation of all n components. 
For example, a plane M+__ can be defined as one 
which reflects the V 1 component symmetrically and 
the Vg. and V3 components anti-symmetrically. 

As n increases this notation becomes almost un- 
manageably complicated. 

(2) To consider the total symmetry group as made 
up of n superimposed symmetry and antisymmetry 
groups, each describing the behaviour of one compo- 
nent. This seemed more tractable and was developed 
further. I t  is, perhaps, analogous to the superposition 
of wave functions. 

The two-dimensional case will be examined first. 
I t  is obvious that  not all pairs of symmetry groups 

are compatible. Let S denote symmetrical lattices 
(or groups) and let A denote antisymmetrical lattices 
(or groups). There are therefore three types of super- 
posed lattices (S: S), (S: A), (A : A). The conditions 
for superposition are (a) that  the systems of the two 
lattices must be the same, and (b) that  each lattice 
must include every point of the other. 

The t w o - d i m e n s i o n a l  compound latt ices  

These are : 
Oblique 

(2p:p~) (2p means that  2 unit cells of the p lattice are 
superimposed on one cell of the pg lattice.) 

Rectangular 
t ! p 

(2p:pb), (4p'C'), (C:pC), (2pb:C') 

Square 
(4p:2pc) 

There are 5 S lattices and 5 A lattices. By definition, 
there are no (S:S) lattices. Each A lattice can be 
combined with an S lattice in one way giving 5 (A :S) 
lattices. As in the rectangular system there are more 
A than S lattices, the same S lattice may be compatible 
with two different A lattices (A and A'). I t  follows 
that  A and A' are compatible with each other. The 

r r rectangular (2pb:c) is such a lattice. 

The compound plane groups  

The treatment can now be extended to the plane 
groups. In what ways can the 17 S groups be super- 
imposed on the 46 antisymmetry (A) groups? If K 
antisymmetrical groups are all compatible with the 
same S group then there will be ½K(K-1)  complex 
(A :A') groups (neglecting which component is to be 
represented by which group) in addition to the K 
groups where A and A' are the same. 

The plane groups are : 17 (S: S) groups plus 46 (A : A ) 
groups plus: 

Oblique 
t . ! 

(2pl: pbl), (p2. p2 ), (2p2 : p~2) 3 (S: A) groups 
(2p2':p~2) (A :A') group 

Rectangular 
(pro:pro'), (pg'pg'), (cm'cm'), (2pm:p~m), 

t t t t 

(2pm: Pbg), (2pm : pblm), (2pg: pblg), (cm: pcm) , 
(cm:p'cg), (4pm:c'm), (pmm'pmm'), (pmm'pm'm') ,  
(pmg:pm'g), (pmg:pmg'), (pgg:pgg'), (pgg:pg'g'), 
(pmg:pm'g'), (cmm:cmm'), (cmm:cm'm'), 

(2pmm : p'bmm) , 
t t t 

(2pmg : pbmg), (2pmm : Pbgm), (2pmg :Paqg), 
t 

(cmm :pcmm) , 
(cmm: p'cmg), (cmm :p~yg), (4pm :c'mm) 

27 (S: A) groups 

The S group pm occurs six times, so there are 15 
additional (A :A') groups from it. Similarly pg occurs 
twice giving 1 group: 

cm 3× giving 3 
p m m 4 x  giving 6 
ping 5x giving 10 
pgg 2x giving 1 
cmm 5 × giving 10 

thus making a total of 46 (A :A') groups in the rect- 
angular system. 

Hexagonal 
(p3ml:193m'), (~31m:~31m'), (p6:~6') 
(p6m:p6'm'm), (p6m:p6'mm'), (p6m:p6m'm') 

That is, there are 6 (S:A) groups plus 3 (A :A') groups. 

Square 
(p4:p4'), (4p4:p~4), (p4m:p4'mm), (iYlm:p4'm'm), 
(p4m:p4m'm), (p4g:p4' gm'), (p4g:p4'g'm), 

(p4g : p4g' m') , 
(4p4m : p'c4mm), (4p4m : p'c4gm) . 

p4 occurs twice, p4g three times and p4m five times, 
so that  there are 14 (A :A') groups in this system. 
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Fig. 3. The inter-relationship of the crystallographic symmetry classifications. The numbers of different types of groups. 

Thus, a two-dimensional periodic field in which 
there are two signs a t t ached  to each point  can have 
the following symmetr ies :  

(S :S)  17 groups, (S :A)  46 groups, (A :A) 46 groups, 
(A :A') 64 g roups ,  

giving a to ta l  of 173 complex plane groups. 
The extension of this t r ea tmen t  in which 3 or more 

signs are to be a t t ached  to each point  is obvious but  
tedious. I t  can be seen tha t  there will be the following 
types  of groups if n - 3: 

( S : S : S ) ,  (S:S:A),  (S:A:A),  ( S : A : A ' ) ,  ( A : A : A ) ,  
(A:A:A') ,  ( A : A ' : A " ) .  

The respective numbers  of the groups of these types  
will be 17, 46, 46, 64, 46, 64, 57. The last  figure, the 
number  of ways in which three different ant isymme- 
trical plane groups can be superposed, is obtained by  

tak ing  the  sum of the  values of ~ K ( K - 1 ) ( K - 2 )  for 
each of the  17 S groups, where K is the  number  of 
A groups compatible with each S group and hence 
mutua l ly  compatible.  This gives a total  of 340 groups. 

Three d imensions  

In  three dimensions there are the following compound 
latt ices:  

Triclinic 
(2P:Ps)  

Monoclinic 
(2P:Pb),  (2P:P~),  (C:Pc), (2C: Co), (4P: Ca) 

Orthorhombic 
(2P:Pc) ,  (C:Pc) ,  ( I : P I ) ,  (2C:Cc), (4P:Ca),  (F:Ca),  

( 8P :FA,  (2C:Ic) 

Tetragonal  
(2P:  Pc), (4P:  2Pc) , ( I :  Pz), (8P: 2Ic) 
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Hexagona l  
(2c:cc) 

R h o m b o h e d r a l  
(2R :Rz) 

Cubic 
( I  :Pz), (8P : F~) 

(The cubic ~' la t t ice  canno t  be combined  wi th  a n y  
cubic A lat t ice.)  

These la t t ices  fall  in to  classes, as follows: 

(S : S) (A : A) (S : A) (A : A') 
Triclinic 1 1 1 0 
Monoelinie 2 5 5 1 -~ 3 ---- 4 
Orthorhombie 4 8 8 3 q- 3 ~- 6 
Tetragonal 2 4 4 3 
Hexagonal 1 1 1 0 
Rhombohedral 1 1 1 0 
Cubic 3 2 2 0 

14 22 22 13 
making 71 in all. 

I n  th ree  d imensions  the  same principles  can be 
appl ied  to  the  space groups.  There  are 230 S groups 
and  1191 A groups so t h a t  the  n u m b e r  of possible 
combina t ions  r ap id ly  becomes enormous.  If  two signs 
are a t t a c h e d  to  each po in t  t hen  each S group will 
cor respond to  an  average  of 1191/230 ~ 4 A groups.  
Hence  the  n u m b e r  of ( A : A ' )  groups will be ve ry  
large as the re  will be a n u m b e r  of S groups which 
mus t  have  more  t h a n  10 compat ib le  A groups.  

The inter-relationship of the crystallographic 
s y m m e t r y  g r o u p s  

The  number s  and  in ter - re la t ionships  of the  var ious  
groups  are summar ized  in Fig. 3. 

The  a u t h o r  is i ndeb ted  to Prof.  Ewa ld  for a s t imu-  
l a t ing  discussion of the  possible genera l iza t ion  of the  
space groups.  
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